Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network
Abstract
:1. Introduction
2. Proposed Framework (RIS-DUG)
2.1. Dataset Description
2.1.1. Experiments on WANG Dataset
2.1.2. Experiments on IAS-Lab RGB Face Dataset
2.1.3. Experiments on Math Works Merchant Dataset
2.2. Dataset Distribution
3. Ris-DUGL Methodology
3.1. Unsupervised Representational Learning Using Deep Generative Model
3.2. Feature Extraction Using Deep CNN
3.3. Transfer Learning
3.3.1. Use of Transfer Learning in the Proposed RIS-DUGL Technique
3.3.2. Transfer Learning with Fine-Tuning the Pre-Trained Model
3.4. Retrieval Task and Performance Evaluation
3.4.1. Cosine Similarity
3.4.2. Retrieval Accuracy: Precision
3.5. Implementation Details
4. Experimental Results
4.1. Comparison with Conventional Methods
4.2. Results and Discussion on Noise-Induced Hybrid Dataset Using RIS-DUGL
5. Conclusions and Future Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafiee, G.; Dlay, S.S.; Woo, W.L. A Review of Content-Based Image Retrieval. In Proceedings of the 2017 International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP2010), Newcastle upon Tyne, UK, 21–23 July 2010; pp. 775–779. [Google Scholar]
- Misty, Y.; Ingle, D. Survey on Content Based Image Retrieval Systems. Int. J. Innov. Res. Comput. Commun. Eng. 2013, 1, 1828. [Google Scholar]
- Júnior, d.S.; Augusto, J.; Marçal, R.E.; Batista, M.A. Image Retrieval: Importance and Applications. In Proceedings of the Workshop de Visao Computacional-WVC, Uberlândia, MG, Brazil, 6–8 October 2014. [Google Scholar]
- Wu, O.; Zuo, H.; Hu, W.; Zhu, M.; Li, S. Recognizing and Filtering Web Images based on People’s Existence. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW, Australia, 9–12 December 2008; Volume 1, pp. 648–654. [Google Scholar]
- Kanumuri, T.; Dewal, M.; Anand, R. Progressive medical image coding using binary wavelet transforms. Signal Image Video Processing 2014, 8, 883. [Google Scholar] [CrossRef]
- Brown, R.; Pham, B.; Vel, O.D. Design of a Digital Forensics Image Mining System. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 395–404. [Google Scholar]
- Ranjan, R.; Gupta, S.; Venkatesh, K.S. Image retrieval using dictionary similarity measure. SIViP 2019, 13, 313–320. [Google Scholar] [CrossRef]
- Alsmadi, M.K. Content-Based Image Retrieval Using Color, Shape and Texture Descriptors and Features. Arab. J. Sci. Eng. 2020, 45, 3317–3330. [Google Scholar] [CrossRef]
- Alturki, R.; AlGhamdi, M.J.; Gay, V.; Awan, N.; Kundi, M.; Alshehri, M. Analysis of an eHealth app: Privacy, security and usability. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 209–214. [Google Scholar] [CrossRef]
- di Sciascio, E.; Celentano, A. Storage and Retrieval for Image and Video Databases; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; Volume 3022, pp. 467–477. [Google Scholar]
- Das, S.; Garg, S.; Sahoo, G. Comparison of content-based image retrieval systems using wavelet and curvelet transform. Int. J. Multimed. Its Appl. 2012, 4, 137. [Google Scholar] [CrossRef]
- Kumar, K.; Li, J.P.; Shaikh, R.A. Content based image retrieval using gray scale weighted average method. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Oğul, H. ALoT: A time-series similarity measure based on alignment of textures. In International Conference on Intelligent Data Engineering and Automated Learning; Springer: Cham, Switzerland, 2018; pp. 576–585. [Google Scholar]
- Singh, S.; Rajput, E.R. Content based image retrieval using SVM, NN and KNN classification. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 549–552. [Google Scholar]
- Malini, R.; Vasanthanayaki, C. An Enhanced Content Based Image Retrieval System using Color Features. Int. J. Eng. Comput. Sci. 2013, 2, 3465–3471. [Google Scholar]
- Li, Z.; Tang, J. Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans. Multimed. 2015, 17, 1989–1999. [Google Scholar] [CrossRef]
- Asam, M.; Hussain, S.J.; Mohatram, M.; Khan, S.H.; Jamal, T.; Zafar, A.; Khan, A.; Ali, M.U.; Zahoora, U. Detection of exceptional malware variants using deep boosted feature spaces and machine learning. Appl. Sci. 2021, 11, 10464. [Google Scholar] [CrossRef]
- Tzelepi, M.; Tefas, A. Deep convolutional learning for content based image retrieval. Neurocomputing 2018, 275, 2467–2478. [Google Scholar] [CrossRef]
- Gomez Duran, P.; Mohedano, E.; McGuinness, K.; Giró-i-Nieto, X.; O’Connor, N.E. Demonstration of an open source framework for qualitative evaluation of CBIR systems. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 1256–1257. [Google Scholar]
- Yu, W.; Yang, K.; Yao, H.; Sun, X.; Xu, P. Exploiting the complementary strengths of multi-layer CNN features for image retrieval. Neurocomputing 2017, 237, 235–241. [Google Scholar] [CrossRef]
- Alzu’bi, A.; Amira, A.; Ramzan, N. Content-based image retrieval with compact deep convolutional features. Neurocomputing 2017, 249, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Simran, A.; Kumar, P.S.; Bachu, S. Content Based Image Retrieval Using Deep Learning Convolutional Neural Network. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1084, p. 012026. [Google Scholar]
- Mohamed, O.; Khalid, E.A.; Mohammed, O.; Brahim, A. Content-based image retrieval using convolutional neural networks. In First International Conference on Real Time Intelligent Systems; Springer: Cham, Switzerland, 2019; pp. 463–476. [Google Scholar]
- Pardede, J.; Sitohang, B.; Akbar, S.; Khodra, M.L. Improving the Performance of CBIR Using XGBoost Classifier with Deep CNN-Based Feature Extraction. In Proceedings of the 2019 International Conference on Data and Software Engineering (ICoDSE), Pontianak, Indonesia, 13–14 November 2019; pp. 1–6. [Google Scholar]
- Cui, W.; Zhou, Q. Application of a hybrid model based on a convolutional auto-encoder and convolutional neural network in object-oriented remote sensing classification. Algorithms 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Desai, P.; Pujari, J.; Sujatha, C.; Kamble, A.; Kambli, A. Hybrid Approach for Content-Based Image Retrieval using VGG16 Layered Architecture and SVM: An Application of Deep Learning. SN Comput. Sci. 2021, 2, 170. [Google Scholar] [CrossRef]
- Dolgikh, S. Unsupervised Generative Learning and Native Explanatory Frameworks. Camb. Open Engag. 2020. [Google Scholar] [CrossRef]
- Abukmeil, M.; Ferrari, S.; Genovese, A.; Piuri, V. Survey of Unsupervised Generative Models for Exploratory Data Analysis and Representation Learning. ACM Comput. Surv. 2021, 54, 99. [Google Scholar] [CrossRef]
- Xie, J.; Wu, N.Y. Generative Model and Unsupervised Learning in Computer Vision; University of California: Los Angeles, CA, USA, 2016; Available online: https://escholarship.org/uc/item/7459n9w5#main (accessed on 4 May 2022).
- Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. Asurveyoftherecentarchitecturesofdeepconvolutionalneuralnetworks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems. 2012. Available online: https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed on 4 May 2022).
- Kaur, S.; Aggarwal, D. Image content based retrieval system using cosine similarity for skin disease images. Adv. Comput. Sci. Int. J. 2013, 2, 89–95. [Google Scholar]
- Tian, Y.; Lei, Y.; Zhang, J.; Wang, J.Z. Padnet: Pan-density crowd counting. IEEE Trans. Image Processing 2019, 29, 2714–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitteri, G.; Munaro, M.; Menegatti, E. Depth-based frontal view generation for pose invariant face recognition with consumer RGB-D sensors. In International Conference on Intelligent Autonomous Systems; Springer: Cham, Switzerland, 2016; pp. 925–937. [Google Scholar]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.Z. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1075–1088. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, A.M. Atomic states in the relativistic high-frequency approximation of Kristic-Mittleman. J. Phys. B At. Mol. Opt. Phys. 1998, 31, L65. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Khan, A.; Zameer, A.; Usman, A. Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 2017, 58, 742–755. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, S.; Liu, Y. Deep residual learning for image steganalysis. Multimed. Tools Appl. 2018, 77, 10437–10453. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Zhang, J. Feature extraction and image retrieval based on AlexNet. In Eighth International Conference on Digital Image Processing (ICDIP 2016); International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 10033, p. 100330E. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Shahriari, A. Visual Scene Understanding by Deep Fisher Discriminant Learning. Ph.D. Thesis, The Australian National University, Canberra, Australia, 2017. [Google Scholar]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Lu, G.; Ma, W.Y. A survey of content-based image retrieval with high-level semantics. Pattern Recognit. 2007, 40, 262–282. [Google Scholar] [CrossRef]
- Mutasem, K.A. An efficient similarity measure for content based image retrieval using memetic algorithm. Egypt. J. Basic Appl. Sci. 2017, 4, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, B. A review paper: Noise models in digital image processing. Signal Image Processing Int. J. 2015, 6, 2. [Google Scholar] [CrossRef]
No. of Layers | 1 | 2 |
---|---|---|
No. of Neurons Per Layer | 100 | 80 |
L2 Weight Regularization | 0.001 | 0.001 |
Sparsity Regularization | 6 | 5 |
Sparsity Proportion | 0.1 | 0.1 |
Scale | True | True |
Epochs | 50 | 20 |
Methodologies | Retrieval Accuracy (Precision) | Average Feature Extraction Time per Image (s) | Average Retrieval Time per Image (s) |
---|---|---|---|
CBIR with SVM based Classification [14] | 39.24% | 5.23 | 6.79 |
Similarity Evaluation using Simple Features [10] | 74.42% | 0.31 | 0.32 |
Proposed RIS-DUGL (AlexNet) | 94.56% | 0.23 | 0.28 |
Proposed RIS-DUGL (VGG-16) | 98.46% | 0.50 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiran, A.; Qureshi, S.A.; Khan, A.; Mahmood, S.; Idrees, M.; Saeed, A.; Assam, M.; Refaai, M.R.A.; Mohamed, A. Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network. Appl. Sci. 2022, 12, 4943. https://doi.org/10.3390/app12104943
Kiran A, Qureshi SA, Khan A, Mahmood S, Idrees M, Saeed A, Assam M, Refaai MRA, Mohamed A. Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network. Applied Sciences. 2022; 12(10):4943. https://doi.org/10.3390/app12104943
Chicago/Turabian StyleKiran, Aqsa, Shahzad Ahmad Qureshi, Asifullah Khan, Sajid Mahmood, Muhammad Idrees, Aqsa Saeed, Muhammad Assam, Mohamad Reda A. Refaai, and Abdullah Mohamed. 2022. "Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network" Applied Sciences 12, no. 10: 4943. https://doi.org/10.3390/app12104943
APA StyleKiran, A., Qureshi, S. A., Khan, A., Mahmood, S., Idrees, M., Saeed, A., Assam, M., Refaai, M. R. A., & Mohamed, A. (2022). Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network. Applied Sciences, 12(10), 4943. https://doi.org/10.3390/app12104943